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SUNMARY

It is shown that the creep buckling of slender or thin-walled

structures whose material deforms elastically as well as in conse-

quence of time-hardening creep can be analyzed first as if the

deformations were due entirely to steady creep. The results of

this analysis can be easily modified to account for time-hardening

creep, and this modification does nct involve any approximation

when the time-hardening creep strain rate is expressed as the

product of a function cf stress by a function of time. The effect

of simultaneous linearly elastic deformations can be taken into

account by multiplying the critical time obtained for steady creep

by a numerical factor. This correction involves no farther-reaching

approximations than the usual steady-creep buckling analysis itself.
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NOTATION

a amplitude of initial deviations

A total cross-sectional area of column

b amplitude of additional elastic displacements

c amplitude of steady creep displacements

C constant in creep law (4)

E Young's modulus of elasticity

f function of x and y

F operator

g operator

G shear modulus

h operator; also distance between flanges of idealized column

H operator

I moment of inertia of cross section of column

J2 second invariant of stress deviation tensor defined in (8)

k factor of proportionality in creep law (49)

K constant defined in (42)

L length of column

m exponent in creep law (22)

n exponent in creep law (49)

p scalar

P axial compressive load acting on column

P Euler's buckling load for column [see (47)]

q exponent of time in time-hardening creep law

r scalar

ijth component of stress deviation tensor

t time measured from instant of load application

t critical time
* cr

tE  Euler time defined in (61)

w additional displacement normal to surface of structure; also

non-dimensional additional lateral displacement of column

[see (32)]

w initial deviation norm.al to surface from perfect shape of0

structure

vi



t~~~~~p~. -yiq , - , f, -

Vtot total non-dimensional lateral displacement (elastic plus

creep) of column

x coordinate on surface of thin structure; also non-dimensional

axial coordinate for columa [see (35)]

x* axial coordinate for colurm

* y coordinate on surface of thin structure; also additional

lateral displacement of column

YO initial deviation of center line of imperfect column from

straight axis

7 amplitude of total displacements of column [see (51)]

b.. Kronecker's delta defined in (7)

AK change in curvature of column

6E Euler strain defined in (61)

e.. ijth component of strain tensor
.IJ
n nominal strain rate defined in (61) 5
nom

V Poisson's ratio

intensity of loading

aE  'Euler stress defined in (61)

a ijth component of stress tensor

#Z,*, operators

Subscripts:

cr critical

e external (convex) side of column

o refers to conditions at instant of load application

I refers to conditions at time t
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Statement of the Problem Many theoretical analyses of creep buckling

have been published in the last few years on the basis of the assump-

tion that the deformations of the thin or slender structural elements

are due exclusively to secondary, or steady, creep. In reality all

these elements are capable of deforming elastically at the same time

when they creep, and often the creep deformations of the material are

due to primary creep rather than to secondary creep. Of course,

inclusion of elasticity and secondary creep in the study complicates

the calculations.

It is the purpose of the present report to show that in many

cases of practical importance it is permissible to carry out the

major portion of the analytical work on the basis of the assumption

that the deformations are due exclusively to secondary creep, and to

apply corrections for elasticity and primary creep only as the last

phase of the treatment of the problem.

The correction here proposed for primary (rather than secondary,

or steady) creep is rigorous; it does not involve any approximation.

The correction for elastic deformations following Hooke's law is just

as rigorous as the steady creep buckling analysis itself if the latter

is based on a single-term representation of the shape of displacements,

and if this shape is the eigenfunction of the elastic problem corre-

sponding to the lowest eigenvalue. In the unusual case when the

creep buckling analysis is carried out with greater rigor, the multi-

plying factor here proposed still represents a good approximation in

most cases.

This multiplying factor first appeared in the creep buckling

literature in papers by Kempner [1] and Hult [2]. It was found a-

the solution of the differential equation of the column that creeps

under the assumption that the deflected shape is the first eigen-

function of the equations of the linearly elastic column in spite of

the nonlinear character of the creep law. The factor appears in the

same manner in the senior author's report [3] on which the example



at the end of the present paper is based. The senior author suggested

the same correction factor for rectangular plates under uniaxial

compression [4], but without any proof of its correctness. But the

factor itself has been used for many years for the calculation of the

perfectly elastic structures of civil engineering; in Timoshenko's

Strength of Materials [5] its discovery is attributed to J. Perry

in 1886.

In the present paper the applicability of the correction factor

is extended to thin-walled structures of all kinds. The conditions

are given under which use of the factor does not introduce any

inaccuracies in the analysis beyond those already inherent in the

analysis of the creep buckling of the structure in the presence of

steady creep.

2
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Governing Equations In the case of columns, plates and shells the,
;problem, as a rule, ban be stated mathematically as a set of equilib-

rium equations

0 (XPY,w )W$P) 0()

a set oi' strain-displacement relations

V~(w $W:) o (2)

0f

a. set of boundary conditions,

I S

2(XyW) = 0 onboundares y(3)

and Ithe constitutive equation encompsssing'elastic and It ime-hardfening

I I ;I

creep deformationss

I I

ij(1/2G) = ( + 3 V C t '(14)

In these equations x ans y a-'e'suitabl& coordinats on the surface
of the structural element, wb = w (xy) represents initial devia.)
tiofls qf the surface in its unstressed sta@ from an ideal'shape in

which the external loads give fise to only a meinbrane ~state of~stress,.
w.= w(x,y) is the additional displacement in tqonsequence of elastic
and creep Oeformations,, p is a scalar factor defthingithe intensity

of the external loads, e. is'the ijth coniponeht of' the strain3i j

the ijth component of the tensor of stress deviatio defined as

repeated letter subscripts indicate summationiover the values 1, 2
and 3 and thus the averge principal stress is

=(l/3)a = (l/3)(a.., + a22 + a'3 (6)'

3i
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the Yronecker delta is defined by

I (7)• :E'Sij =1 wheni J whni j .(7)

the second i nvariant of the stress deviation tensor is

V I

1 2' = (1/2)s.i .s ()

tG i's the shear modulus chaiacterizing linear elastic deformations,

V Poisson's ratio, t the timehlapsed' from the'instant when the

loads were applied, C, m and q are 'constants characterizing the

creep deformations' , and 1 represent functional relations,

and the dot above symbols indicates a differentiation with respect

to time. 'The numerical value:of m is usually between 1 and 7,

and Uh~.t of q is usually 3/3.

The Case of Purely Elastic Deformations The governing equations

simplify considerably when the deformations are purely elastic. It

will nowbe assurhed that in the case when the constitutive equation

(4) is

, l~-2v(1
C: (1/2G) [s. + 3l')akb]()

the governing equations can be reduced to the appropriate boundary 1
conditions, and to the single differential equation

Fw + PHw + PHw = 0 (10)

wheke F and H are linear differential operators which may, or

may-.not, involve multipliers aepende.nt on x and y, Examples of

such equations are the plate equation,(see,, for instance, Eq. 250

on p. 39.4 of Timo;henko's classical book [61); and,Donnell's equation

of the circular cylindrical hell (which is easy to obtain from

Eq. (6) ot one of Donnell's classical papers [71).

It is further assumed that when the structural element is

,4*

4 i
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if
perfect,

wo(xy) 0 (11)

there exist eigenvalues p = p and a corresponding complete set

of eigenfunctions

w = f(x,y) (12)

for which both the boundary conditions and (10) are identically

satisfied when w = 0

IV + P Hw o (13)

This implies that

Ff(x,y) = p g(x,y) (14)

Hf(x,y) = -r g(x,y)

where p and r are scalars. It follows then that the eigenvalue

is

p =p/r (15)

Let it be assumed now that the imperfect shell is characterized

by

w a f(x,y) (16)

where a is the amplitude of the eigenfunction f(x,y) . The solution

of (10) can then be written in the form

w = b f(x,y) (17)

Indeed, substitution in (10) yields the algebraic equation

pb - pra - prb =0 (18)

from which the amplitude b of the deformations caused by the loads

5



follows as

b =a pr (19)

Division of numerator and denominator by r and consideration of

(15) lead to the expression

b = a . (20)
Pcr-P

It can be seen that the amplitude of the additional displacements of

an initially imperfect structure increases beyond all bounds as the

intensity of loading approaches the critical value. One should also

note that the amplitude a + b of the total displacements is

S+ b = c a(21)
cr

The Case of Purely Steady-State Creep Deformations In this case

the constitutive equation (4) is reduced to

e.. M S.. (22-- 2 ij

which is known as Odqvist's law. After a load system of prescribed

intensity p has been applied, any initial deviation wo(xy) is

augmented with time. As the creep deformations are considered to be

permanent, the natural, unstressed state of the shell at t , which

can be designated as wo(x,y,t) , is, in general, different in shape

and magnitude from wo(X,y,o) at the moment of load application.

The first problem of the creep buckling analysis can thus be stated

as the determination, from equations (1),(2),(3) and (22), of the

creep deformation rate wr(x,y,t) at t when the unstressed state of

the shell is characterized by wo(x,y,t)

The problem is a difficult one because of the nonlinearity of

(22) when m > 1 . No rigorous, closed form solution of any problem

of this kind is known to the authors. The usual approach to an

approximate solution consists of assuming (x,y,t) to be proportional

to the eigenfunction f(xy) corresponding to the lowest eigenvalue

of the eigenvalue problem obtained by replacing (22) with (9), and

6



satisfying the governing equations in sn-,i: approxims-e nanner, for

instance, by the collocation aethot?. An improvement on this method

of solution consists of expanding the solution into a series of the

eigenfunctions with unknown coefficients and requiring that the

multipliers of each eigenfunction vanish.

It is of great importance to engineers to know that the ratio of

the coefficient of the second eigenfunction to that of the first

eigenfunction has been found very small during the major part of

the creep process in all those cases in which it was investigated.

Such studies were carried out for columns in l91f [8] and for flat

rectangular plates in 1969 [9]. In addition, the results of the

theory have been found to agree with the results of experiments in

an engineering approximation. It can be concluded, therefore, that

it is permissible to base the analysis on the assumption that both the

elastic and the creep deformations have the shape of the eigenfunction

corresponding to the lowest eigenvalue.

As at any given time t the deflection rate of the column

depends only on the state of deflections, one can write

-(xy) f(x,y) = h(c) f(xy) (23)

where f(x,y) is the eigenfunction of the linearly elastic problem

corresponding to the lowest eigenvalue and h(c) is a function of

the amplitude alone when p is prescribed.

The second problem of the creep buckling analysis is the

integration of (23). Formally one may write

fdt f dc~ (24)

In all the problems solved up to now for m > 1 a finite time

t was found at which the deformations tended to infinity. Hence
cr A
the critical time tv can be defined as

c7r



t

f dc (25)tt1177
"C O

where c is the magnitude of c at the time when the loads are

applied and tcr.s t  is the critical time in the presence of steady
creep.

Simultaneous Nonlinear Time-Hardening Creep and Linearly Elastic

Deformations This is the critical time of the structure when the

only mechanism of deformation is steady creep. When the creep defor-

mations are of the primary type, (22) is replaced by

SCt 2 s ij (26)

Here t can be considered as a constant multiplier of C in all

the differentiations and integrations. Thus inclusion of this power

of time in the analysis simpiy leads to

Jtdt = dc (27)

in the place of (24). It follows then that the critical time for

time-hardening creep can be calculated from

q+l= t (28)q+l cr.t.h. = cr.st

where t is the critical time in the presence of time-hardening
cr. t.h

creep.

When, in addition, the structure is capable of linear elastic

deformations, every small increment cdt in the creep deformations

is magnified by the factor p in agreement with (21). Thus

h(c) in the last member of (23) is multiplied by this factor which

remains a constant during the integration with respect to time

provided the intensity of the loading remains constant. It follows

~8



then that the critical time t* in the presence of simultaneous
cr

time-hardening creep and elastic deformations is

i/(q+l)
t* (q+l) cE r (29)cr P cr cr'st I

Generalization The arguments presented are valid if Odqvist's law

of (22) is replaced by some other creep law that expresses the strain

rate as a function of the stresses, and when the time function in (4)

is not a power function. It is only necessary that the creep rate

should be given as a function of stress multiplied by a function of
time. Of course, equations (26) to (29) must be modified if t q  is

replaced by some other function.

Example To illustrate the statements made, the simple example of

the idealized column of constant cross section simply supported at

its two ends and loaded in uniform axial compression will now be

worked out. At first it will be assumed that the material of the

column deforms only linearly elastically. The notation is shown inii Figs. 1 and 2; the analysis is similar to that presented in [3].

The conditions of equilibrium are:

(A/2)(a. + c) = P (30)

(Ah/4) (c. - a P(yo + y) (31)
1e o

where a. is the stress in the internal (concave) flange of the

idealized column, c is the stress in the external (convex) flange
e

of the column, and both are counted positive if they are compressive;

P is the axial load, also positive if compressive; A/2 is the

cross-sectional area of one flange; and yo and y are the small

initial and additional lateral displacements.

If the notation

W YO (32)wo = 9

9i



is introducedwhere h is the distance between the flanges of the

idealized column, the equilibrium equations can be written in the

form

. - (P/A)(+ w + w) a = (P/A)(l-w -w) (33)

1 0 0

These two equations take the place of (1) in the general case.

The small change AK in the curvature of the column during the

transition from the initial shape y0  to the shape y0 + y is

A= -2/lr*2 (34)

where x* is the distance from one of the supports. With the notation

x = x*/L (35)

equation (31) can be written in the non-dimensional form

= -(h/2L2 )C 2 v/x2) (36)

But the curvature can also be expressed in terms of the strains

e. on the internal (concave) and C on the external (convex) side
1 e

of the column (the strains are considered positive when they are

compressive):

Z = (1/h)(Ci - Ce) (37)

Hence the strain-displacement relation (2) becomes

(c2w/&x2) + (2L2 /h 2 )(ei " e) = 0 (38)

This corresponds to (2) in the general derivation.

The boundary conditions can be given in the form

w =(,/;X) =0 when x= Ol (39)

10



and the constitutive e(quation (4i) in the case of exclusively elastic

* uniaxial deformations reduces to

e a (40)

Substitution from (33) and (4o) in (38) yields the differential

equation

where -

K2 = 4 2 /EAh 2  (42)IThis is (10)if F 32 an PH F2

When the column is perfectly straight,

Sw 0 =0 (43)

and (41) reduces to

(c)2w/2b 2 ) + =k- 0 (414)

-~which corresponds to (13) in the earlier derivations. This

equation and boundary conditions (39) are satisfied by

w sin liX= f(x,y) (45)

From (13) and (14) one obtains

Fw= -r sin WX D g(X,y) P

(146)
H= K2sin 7,x -r g(x,y)

and (15) yields the critical value of the axial load 2

2
P P Ir/ r ,,?1,,2 LAh) WE (p7

-r E (



which is the lowest eigenvalue of the homogeneous differential

equation (44) in thze presence if boundary conditions (39). It is

known aa the Euler load. The quantity I = A(h/2)2  is the moment

of inertia of the section of the idealized column.

It follows then from (17) and (21) that in the presence of

initial deviations w in the shape of the first eigenfunction (45)

the sum of the initial and the additional deformations becomes

P
w a sin ,Tx (48)

p -P
E

Next the case of purely steady-state creep deformations will be

investigated. Under these conditions (4) simplifies to

e= = ko (49)

with

a= 2 M k= 2C/3 m 1 (

Use will be made of the elastic analogy of [10] and the instantaneous

deflected shape at t as causeci by elastic and creep deformations

will be designated by the symbol wtOt . It will be represented by

S= sin Wx (51)

which is the eigenfunction corresponding to the lowest eigenvalue of

the elastic problem multiplied by the coefficient 7 . When the

axial load P is acting or, this analogous deflected column,

equilibrium requires that
= PA( tot) % = (P/A)(l - Wo) (52) ,

cr (P/A) (2 + w) t ot)

The additional deformation wad of this non-linear!y elastic column

will be assumed to be represented by the first term of the infinite

series

12



W ad c sin 7rx+ *.(53)

The deformation law of the analogous column is

E= ka n (4

On the basis of (38) the strain-displacement relation of the

analogous column is

(62W ad/6x2) + (2L2/h2)(,E, - je) 0(5

R.~ follows from (52) and (54) th~at

e. =2k(P/A)
3(3w t + w3~ (56)

I e t o

But

(sin 7M)3 =(3/4)sin wx.- (1/4~)sin 371X (57)

Since the terms sin 3WX , sin 5iiz . ... were omitted from Eq. (53),
the present analysis deals only with multipliers of sin 7Mx Thus

(56) becomes

G E 2k(p/A)3[13Y + (3/14)73:lsin lix (

Substitution from (53) and (58) in (55) and omission of the cL.:4ilon

trigonometric multiplier yield

2 (pA3[ + /)~] 0-7r C +' 6k(2L2/h 2 )(A (1473 (9

This can be solved for the amplitude c of the additional displace-

ments of the analogous elastic column:

c = (6k/12)(2IL2/h2)(p/A)3[y + (1/4)y3] (60)

Symbols will now be introduced for th~e following physical

quantities:Z

13
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4(L/h) 2 N i t heEuerstes

2

JA <./'= "'4(E h)2/  is the Euler stress

r2
EE =aE/E=4L/) is. the Euler strain

(61)

enom = = k(P/A)3  is the nominal (initial)strain rate

tE = EE/'nom is the'Euler time

With these symbols (60) can be written in the form

c = (3/4)(/tE)(4y, + y3) (62)

This is the amplitude of the additional displacements of the

non-linearly elastic analogous column. But in view of the the elastic

analogy this is also the rate of change of the amplitude of the creep

deformations of the column that ceforms non-linearly in consequence

of steady creep. Thus for the column that deforms only in steady

creep from the state characterized by wtot according to (51) the

rate of change of the creep deformations becomes on the basis of (51)
and (53)

'tot E) sin 'x = (3/4)(4/t)(4 + 73)sin x (63)

Since 7 = d7/dt , if the only mechanism of deformation were steady

creep, the time required to reach a deformed state characterized by

the amplitude y1 would be given by the integral
41

7Y1 iyi2(4+o2)

t I = (l/3)t JA [ =- (l/ 6 )tE 1 (64)

The critical time of creep buckling is defined as the time at which

the amplitude c1  approaches infinity. Hence

14
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tcr E (i/6)t

This is the formula obtained for this case in [3].

W len 'the creep law is the time-hardening law

.--= ¢ tq • ,.. ,; (66)'
ka 

It

the effect of time hardening can be followed up by repiacing k with

kt g in. every'step of the foregoing derivations.! It is easy to see

that in such a case (63) is replabed by
= 6/lt = (3/4)(tq/t)(4y'+ 73.)' '(67)

The integral of this equation is

t 2 2'/ . , - _ _ _ _

ft dt = =Q (4/3)t 7+ = i/i)t 2 (68)

f 0 4y* 0 1

The effect of linpar elastic deformations can also be taken into

account without difficulty. Whenever creep causes an increase dy

*in the amplitude df the deformations, this increase is magnified by

the factor P/(E-P)F because of the elasticity,of the material.

Since, this factor is constant with time, (67) has to be modified to

read

" 
z

dy/dt = PE/(PE-P) (t /t )(4 - F (69)

and the time to reach the, prescribed displacement amplitude r1
becomes

2 2"[/(q+l) ]tq -i1 = l/6)[ (P2 P) PE~t g  71- 7) 2 (70)

Yo (4 1

15
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The critical tne t* of the column whose material deforms
cr

simultaneously because of time-hardening creep and linear elasticity

can thus be calculated from the equation

4+y 2
., , [1/(q+l)l tc'' (i/6.1[ ('Pl-PI/P,.ItElg .o (71)

ci' ~ . (71

or from

t*= (41)(tE/6)[(PE-P)/PE]lg 2 0 (72)

This expression corresponds to (29). It also agrees with the result

of the analysis of [3] if q is set equal to zero; this is necessary

since- the calculations of.[3] were carried out for a column that

deforms elastically and because of steady creep.

1
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